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Abstract—Using high-quality jet-vapor-deposited (JVD) SiN as the highest reportedr for a p-MOSFET with a modulation-
gate dielectric, p-type SiGe transistors are fabricated on SiGe doped SiGe heterostructure (MOS-MODFET) is 23 GHz [10].
heterostructures grown by ultra-high-vacuum chemical vapor  conyentional thermal oxide is not an optimal candidate for
deposition (UHVCVD). For an 0.25um gate-length device, the - A , L .
gate leakage current is as small as 2.4 nA/mm ata. = —1.0 gate dielectrics in SiGe MOSFET'’s b_ecause |ts_h|gh processing
V and V. = 0.4 V. A maximum extrinsic transconductance of temperature may cause the relaxation of strained SiGe layers
167 mS/mm is measured. A unity current gain cutoff frequency and segregation of Ge atoms, which would significantly de-
of 27 GHz and a maximum oscillation frequency of 45 GHz are grade the gate oxide quality. Jet-vapor-deposited (JVD) oxide,
obtained. deposited directly on Si at room temperature, has demonstrated

excellent electronic properties [15]. To further suppress the

I. INTRODUCTION tunneling current, high dielectric constant material, e.g.,,SIiN

HE application of SiGe bandgap engineering concept '{aan attractive candidate in place of ultrathin oxid_e.. Ma [.15]
T silicon technology has made possible the fabrication gpd Tsenget al. [16] have demonstrated that JVD nitride with

devices that were previously only feasible in other materigl "M equ|valent-OX|de-th!ckne§s (EQT) has 100 times Iowe.r
systems. Si/SiGe heterobipolar transistors with demonstrat§@kage than thermal oxide with the same EOT on bulk Si
unity current gain cutoff frequenciegf) and maximum CMOS, ano_l the mterfacg stab|llty_ of JVD nitride compares
oscillation frequencies fyiax) well beyond 100 GHz have favorably with thermal oxide. In th|s Igtter, for the first t_|me.,
promoted Si-based technologies into an area that has,vg%report our results on the fe}bncgtlon and.characte_rlgatlon
far, been an exclusive domain of Il-V devices. Si/SiG8f P-type SiGe MOS-MODFET's with ultrathin JVD nitride
modulation-doped field effect transistors (MODFET's) havdte dielectric.

also demonstrated excellent characteristics. For p-SiGe MOD-

FET's, an fr of 70 GHz and anfuax of 85 GHz have Il. DEVICE STRUCTRUE AND RPOCESSING

been reported [1], [2]. For n-type SiGe MODFET's, &n The heterostructure was grown by ultra-high-vacuum chem-
of 62 GHz and anfyax of 92 GHz have been achievedical vapor deposition (UHVCVD) on annSi substrate. The
[3]-[5]. However, relatively high gate leakage current hindetayer sequence starts with a linearly step-graded_$jGe,

the usefulness of these devices [4], [6]. The insertion blffer layer relaxed to the lattice constant of, S6e)s.

an oxide insulating layer between the SiGe channel and thel-um thick S ;Ge) .3 buffer layer is followed by the
gate could surmount the limitation. This could make possibfeodulation-doped structure consisting of, from bottom to
the realization of high-speed metal-oxide—semiconductor figlap, a 4-nm B-doped $iGey s supply layer at a doping
effect transistor (MOSFET)-type devices which take advantagensity of2 x 10'® cm—2, a 3-nm undoped $i-Gey 3 spacer,

of both the superior electron and hole transport propertiesand a 4.5-nm thick $i_,,Ge, channel graded from 0.8
strained Si/SiGe layers. So far, several groups have reported0.7, and a 10-nm §iGe)s cap layer. Compared to
results of p- and n-type MOSFET's in which strained SiGeonventional MODFET's [1], [17], the thinner cap layer was
or Si layers were used as channels [7]-[14]. A maximummsed to guarantee that the high mobility carriers in the SiGe
dc extrinsic transconductandg,,,) for an 0.25um channel quantum well can be well modulated while the buried channel
length SiGe p-MOSFET of 167 mS/mm was achieved usimgovides benefits such as suppression of hot-carrier injection
a buried SiGe as channel, which was separated from a gati® the gate dielectric and reduced carrier surface scattering
oxide dielectric by a silicon cap layer [7]. To our knowledgewhich tend to enhance device performance and reliability. The

. . . , , layer exhibited a two-dimensional hole-gas mobility of 930
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Fig. 1. Gate current as a function of gate voltage for four transistors with @)
Ly =0.25,0.5,0.7, 1.0 um (W, = 50 um) at drain biad/3s = —1.025 V.
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Fig. 2. Gate current as a function of gate bias for a Q:B5-gate-length in 0.2-V steps, and (b) subthreshold drain current versus gate voltage for a

device with 504 m gate-width at drain biases ef2 V, —1.025 V, and 50 mv. device with 0.25zm gate-length and 5@m gate-width. The inset shows the
extrinsic transconductance and drain current as a function of gate voltage at

drain biasVys = —0.8 V.
about 5 nm, which corresponded to an EOT of 3 hm. Mesa-

isolation by reactive ion etching in Gplasma was carried out for L,

to define the device active area. The mesa height was 240 g smaller than the maximum gate leakage requirement of 1
Then', the samplg was pgsglvated using 280-nm thick.SiQ) ;o2 imposed by the limitation of chip standby power. This
Ohmic metallization consisting of 30-nm Pt was evaporateg, s the high quality of the JVD silicon nitride gate dielectric
and lifted off after the silicon nitride in the ohmic area Wa$ver On the other hand. no hard breakdown is observed for

g = 0.25, 0.5, 0.7, and 1.0 pxm, respectively, which are

) our devices. Fig. 2 shows gate current as a functiolgfat
various gate lengths (0.25, 0.5, 0.7, anfirh) were patterned different drain biases for a typical 0.26n gate-length device

with a trilayer resist system using electron beam lithography, 4 gate width of 5Qum. At a drain biasVy, of —50 mV
The Pd was used for preventing the oxidation of aluminuqhe gate leakage currentiss.2 x 10-10 A andi.4>< 10-10 A’

Tr_le source-drain distanpe is;gzn for all devices e.xce.pt tho:se.at gate biases/,., of —1 V and 1 V, respectively. Compared
with 1-um gate length in which the source-drain distance I a conventional MODEET with a Schottky gate, this gate
3 pm. current is three orders of magnitude smaller than that at the
same reverse bias and seven orders of magnitude smaller than
that at the same forward bias [17]. Fig. 3(a) shows the dc
Fig. 1 shows the gate leakage current of devices withu®0- characteristics of a typical device with 0.2Ba gate-length.
gate width and different gate lengths at a drain bias 8f025 The device has good pinchoff with an off-state current less than
V. As expected, the gate current scales with gate length. BumA/mm for Vg, < 1 V. At Vyo = —1.0 V and V. = 04
at reverse gate bias, the Quf device has only slightly higher V, the off-state gate leakage current is only 2.4 nA/mm.
gate current than the 0/m device. This is probably due toSo, its contribution to the subthreshold current is negligible.
slight differences in the gate-source spacingsVAt= —1.0 Therefore, the subthreshold current, shown in Fig. 3(b), is due
V, the gate current density is 2.4, 3.1, 4.8, and 28.0 mA/cnto buffer leakage below the channel. Further reduction of drain

Ill. RESULTS AND DISCUSSION
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mS/mm was obtained. Aii; of 27 GHz and anfyiax of 45

30 30 i -
GHz have been achieved. These dc and RF characteristics are
o comparable with state-of-art SiGe MODFET’s but with much
24 124 .
—_ o lower gate leakage current. The drain subthreshold current
m o . .
o o o can be reduced by further optimization of buffer-layer growth
£ 189 © °%esa 182 techniques.
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